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Abstract — An adaptive algorithm is developed for
constrained modeling of general passive components. The
algorithm builds compact, multidimensional, analytical
circuit models and represents the scattering parameters of the
passive components as a function of its geometrical
parameters and as a function of the frequency. Multiple
constraints, or relationships between the geometrical
parameters, may exist. The model generation algerithm
combines iterative sampling and medeling techniques. It
groups a number of full-wave electromagnetic (EM)
simulations in one multidimensional analytic model. The
modeling accuracy level is user-defined. The analytical
circuit models can easily be implemented and used in
commercial circuit simulators. The models provide EM-
accuracy and generality at traditional circuit simulation
speed.

I. INTRODUCTION

Accurate models for arbitrary pWW/RF components are
very important for the design of high-speed electronic
circuits. Several numerical EM analysis techniques can be
used to accurately model passive components. However,
most numerical EM techniques require a significant
amount of expertise and computer resources, and are often
only used for verification purposes. On the other hand
circuit simulators are very fast, and offer a lot of different
analysis possibilities (e.g. optimization, parameter sweeps,
tuning). However, the number of available high-frequency
models in circuit simulators is limited, and the accuracy is
not always guaranteed up to high frequencies.

Numerous efforts have been spent to build models for
general structures based on full-wave EM simulations.
Previously used techniques include lookup tables, curve
fitting techniques and neural networks [1-3]. A common
drawback of these efforts is the lack of knowledge about
the accuracy of the resulting models, and there are
capacity issues with higher dimensional models.

We developed a new adaptive technique, called MAPS
(Multidimensional Adaptive Parameter Sampling), for
building parameterized analytical models of general
passive WW/F components with a user-defined accuracy
[4-6]. The MAPS models are based on full-wave EM
simulations, and can be used in a circuit simulator. In this
paper, the basic MAPS technique is extended to handle
constrained parameter spaces, where multiple relations
may exist between the different geometrical layout
parameters.

II. ADAPTIVE MODEL BUILDING ALGORITHM

The scattering parameters S are represented by a
weighted sum of multidimensional orthonormal polynomi-
als (multinomials) P,. The multinomials only depend on
the coordinates ¥ in the multidimensional parameter space
R, while the weights C_ only depend on the frequency fi

SU) = M0Z) = 3, C.00P.(%) o

The weights C, are calculated by fitting equation (1) on
a set of D data points {x, S¢,¥)} (withd=1, ..., D). The
number of multinomials in the sum is adaptively increased
until the error function E(f%) = | S¢i%) - A(X)| is lower
than a given threshold (which is function of the desired
accuracy of the model) in all the data points.

For numerical stability and efficiency
orthonormal multinomials P, (%) are used [5].

reasons

III. ADAPTIVE DATA SELECTING ALGORITHM

The modeling process starts with an initial set of data
points. New data points are added adaptively until the
user-defined accuracy level is guaranteed. The process of
selecting data points and building models in an adaptive
way is called reflective exploration [7). Reflective
exploration is useful when the process that provides the
data is very costly, which is the case for full-wave EM
simulators. Reflective exploration requires reflective
Sunctions that are used to select a new data point. The
difference between 2 consecutive approximated models
(with different order M in (1)) is used as a reflective
function. A new data point is selected near the maximum
of the reflective function. No new data points are added if
the magnitude of the reflective function is smaller than the
user-defined accuracy level (over whole parameter space).

Physical rules are also checked. If the approximate
modeling function M(f,%) violates certain physical rules, a
new data point is chosen where the criteria are violated the
most.

Furthermore, at least one data point is chosen in the
close vicinity of local minima and maxima of the modeling
function M(f,X) over the parameter space of interest.

The complete flowchart of the algorithm is given in
figure 1.
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Fig. 1. Adaptive modeling and sampling flowchart
IV. CONSTRAINED MODELING

In the basic modeling algorithm it is assumed that the
parameter space is a n-dimensional hypercube, where all
of the geometrical parameters can be varied independently
over their whole range. However, in certain structures the
geometrical parameters must satisfy a number of con-
straints. Due to these conditions the parameter space is no
longer rectangular. Certain parts of the parameter space
are forbidden. This affects the way in which the initial
one-dimensional models are built as well as the way in
which the initial #-dimensional data point distribution is
generated.

Figure 2 shows a two-dimensional normalized parameter

space (the extension to more dimensions is straight-
forward). The two geometrical parameters x; and x; cannot
be varied independently. They have to satisfy the condition
g(x1.x3) > 0. Due to this condition the parameter space is
divided in two parts: a valid part where g(x;,x;) >0 and a
forbidden part where g(x;,x) < 0. All data points must lie
in the valid part of the parameter space.
The borders of the parameter space are assumed to be
linear: a straight line in a two-dimensional parameter
space, a plane in a three-dimensional parameter space or a
hyperplane in a hypercube. In this way a border can be
represented by an equation of the form:

g(x,,...,x,,)=ia,xi =0 €))

X2

' g(xl,x2)=0
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Fig. 2. Constrained two-dimensional parameter space

The first step in the modeling process is building the
one-dimensional models. In the basic MAPS algorithm [5]
these models would be built along lines through the center
of the parameter space. Since the one-dimensional models
are used to gain insight in the influence each of the
geometrical parameters has on the modeled S-parameters,
the models should be built along lines where the
geometrical parameters have their maximum variation. In
the case of figure 2, x; doesn’t have its maximum variation
along the line x, =0.5. Therefore, a first adaptation is made
to the basic algorithm. The lines for the one-dimensional
models are shown in figure 2.

In a second step, the one-dimensional models are used
to generate the initial two-dimensional data point
distribution. In figure 2 these data points are represented
by the black dots. Some of the data points lie in the
forbidden part of the parameter space. These points have
to be projected onto the border g(x;,xy) = 0. This is done
as follows. A straight line through a point (xz,...,X4)
perpendicular to (2) is given by the equation:

x; =Xy + A, 3
Substituting (3) in (2) results in an expression for A:

4 DO @

P

Substituting this expression in (3) yields the coordinates
of the projected point. In figure 2, the projected points are
represented by the circles on the border of the parameter
space. The initial data point distribution then consists of
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the points in the uniform mesh that lie in the valid part of
the parameter space, the projected points and the data
points used for the one-dimensional models.

Once the initial data point distribution is generated, the
rest of the modeling process is almost the same as the
basic modeling algorithm. New data points are selected by
evaluating the selection criteria on a dense grid. This grid
covers only the valid part of the parameter space. In this
way it is made sure that no new data points are selected in
the forbidden part of the parameter space.

V. EXAMPLE

As an example consider the layout shown in figure 3.
This is the layout of a spiral inductor on a microstrip
substrate (with a thickness of 25 mil and a relative
dielectric constant of 9.6). There are two ports, P; and P,.
A model is built for the scattering parameters of this
structure as a function of two geometrical parameters, W
(the width of the strips) and S (the spacing between the
strips), and of the frequency f. The ranges for W, S and f
are given in table 1. The S-parameters are calculated using
the commercially available full-wave simulator ADS
Momentum [8]. The desired accuracy of the model
compared to the EM simulations is set to -55 dB.
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Fig.3. Layout of spiral inductor

variable min max
W 10 mil 30 mil
S 5 mil 15 mil
f 1 GHz 5 GHz

Table 1. Parameter ranges for the spiral inductor

Suppose that embedding the inductor in a given design
forces the total dimensions of the inductor to be restricted,

e.g.:
L =3W+S+a<l10
L, =4W +25+a <140

©)

Due to these restrictions # and § cannot be varied
independently (a = 40 mil). Figure 4 shows the reduced
parameter space along with the two borders G,(W,S) = 70 -
3W-S=0and GyW,S) =100 - 4% - 25 = 0. The intersect
of G, and G, is the point (W,S) = (20,10). The forbidden
part-of the parameter space is grayed. :

Due to the restrictions, W cannot reach the maximum of
its range. For W > 21.667 all points are in the forbidden
part of the parameter space. The modeling algorithm must
be able to detect this and adapt the original parameter
ranges. To do this, interval arithmetic [9] is used in an
iterative process:

e STEP 0: Set the initial interval values W®=[10,30]
and S@=[5,15]. Setk=1.

e STEP 1: Solve both G;( W,8%") = [0,+0] and
G W,8%) = [0,+00] for W. The results are W, and
W,. Set W= intersect(W(k'”,W,,Wz ). Do the same
for S.

o STEP2: If W= WD and §® = S*D stop the
iteration, else set k&=k+1 and return to STEP 1.

As a result of this iterative process the parameter ranges

are adapted to W = [10,21.667] and S = [5,15]. The
adapted parameter space is shown in figure 4.

15 W) ®

©)

10 —¢ .

line W model line S modetl

Fig.4. Adapted parameter space
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Fig. 6. Data points used during the modeling process

At this point the real modeling starts. The first step is

building two one-dimensional models: one for W (with.

S$=5) and one for § (with #=15.833). Based upon these
models the initial two-dimensional data point distribution
is generated. In figure 4 the crosses represent the data
points used in the one-dimensional models, and the black
dots represent the data points in the initial two-
dimensional distribution. 3 of the points in the initial data
point distribution lie in the forbidden part of the parameter
space. These are projected onto the borders G, and G,.

Finally, 7 more data points are chosen using the
selection criteria, resulting in a total of 27 data points for
the whole modeling process. All data points used are
shown in figure 6.

In figure 7, the scattering parameters of the spiral (in the
constrained parameter space) are represented as a function
of frequency f, and geometrical parameters # and S.

The accuracy of the model was tested in 4838 data

points uniformly distributed over the parameter and °

frequency space. The maximum deviation that was found
between the S-parameters calculated using the MAPS
model and the results obtained with the EM simulator [8]
was -54.3 dB. 99.9% of the test points had an accuracy
level of -55 dB or better.

VI. CONCLUSION

A new adaptive technique (MAPS) was presented for
constrained parameterized model building of general
passive components. Certain dependencies may exist
between (some of) the geometrical parameters. The
models are based on full-wave EM simulations, and have a
predefined accuracy. Once generated, the analytical
models can be grouped in a library, and incorporated in a
circuit simulator where they can be used for simulation,
design and optimization purposes.

Fig. 7.

S-data of spiral as a function of £, W, §

An example was given to illustrate the technique.
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