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Abstract - An adaptive algorithm is developed for 
constrained modeling of general passive components. The 
algorithm builds compact, multidimensional, analytical 
circuit models and represents the scattering parameters of the 
passive components as a function of its geometrical 
parameters and as a function of the frequency. Multiple 
constraints, or relationships between the geometrical 
parameters, may exist. The model generation algorithm 
combines iterative sampling and modeling techniques. It 
groups a number of full-wave electromagnetic (EM) 
simulations in one multidimensional analytic model. The 
modeling accuracy level is user-defined. The analytical 
circuit models can easily be implemented and used in 
commercial circuit simulators. The models provide EM- 
accuracy and generality at traditional circuit simulation 
speed. 

I. INTRODUCTION 

Accurate models for arbitrary pW/RF components are 
very important for the design of high-speed electronic 
circuits. Several numerical EM analysis techniques can be 
used to accurately model passive components. However, 
most numerical EM techniques require a significant 
amount of expertise and computer resources, and are often 
only used for verification purposes. On the other hand 
circuit simulators are very fast, and offer a lot of different 
analysis possibilities (e.g. optimization, parameter sweeps, 
tuning). However, the number of available high-frequency 
models in circuit simulators is limited, and the accuracy is 
not always guaranteed up to high frequencies. 

Numerous efforts have been spent to build models for 
general structures based on full-wave EM simulations. 
Previously used techniques include lookup tables, curve 
fitting techniques and neural networks [l-3]. A common 
drawback of these efforts is the lack of knowledge about 
the accuracy of the resulting models, and there are 
capacity issues with higher dimensional models. 

We developed a new adaptive technique, called MAPS 
(Multidimensional Adaptive Parameter Sampling), for 
building parameterized analytical models of general 
passive pW/F components with a user-defined accuracy 
[4-61. The MAPS models are based on full-wave EM 
simulations, and can be used in a circuit simulator. In this 
paper, the basic MAPS technique is extended to handle 
constrained parameter spaces, where multiple relations 
may exist between the different geometrical layout 
parameters. 

II. ADAPTIVEMODELBUILDINGALGORITHM 

The scattering parameters S are represented by a 
weighted sum of multidimensional orthonormal polynomi- 
als (multinomials) P,. The multinomials only depend on 
the coordinates f  in the multidimensional parameter space 
R, while the weights Cn only depend on the frequency3 

(1) 

The weights C, are calculated by fitting equation (1) on 
a set of D data points {& S&Q} (with d = 1, . . ., 0) . The 
number of multinomials in the sum is adaptively increased 
until the error function E&Z) = 1 Sfj$ - A&f)1 is lower 
than a given threshold (which is function of the desired 
accuracy of the model) in all the data points. 

For numerical stability and efficiency reasons 
orthonormal multinomials P,(ZJ are used [5]. 

III. ADAPTIVEDATASELECTINGALGORITHM 

The modeling process starts with an initial set of data 
points. New data points are added adaptively until the 
user-defined accuracy level is guaranteed. The process of 
selecting data points and building models in an adaptive 
way is called rejlective exploration [7]. Reflective 
exploration is useful when the process that provides the 
data is very costly, which is the case for full-wave EM 
simulators. Reflective exploration requires reflective 
functions that are used to select a new data point. The 
difference between 2 consecutive approximated models 
(with different order M in (1)) is used as a reflective 
function. A new data point is selected near the maximum 
of the reflective function. No new data points are added if 
the magnitude of the reflective function is smaller than the 
user-defined accuracy level (over whole parameter space). 

Physical rules are also checked. If  the approximate 
modeling function M&ij violates certain physical rules, a 
new data point is chosen where the criteria are violated the 
most. 

Furthermore, at least one data point is chosen in the 
close vicinity of local minima and maxima of the modeling 
function M&ij over the parameter space of interest. 

The complete flowchart of the algorithm is given in 
figure 1. 
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Fig. 1. Adaptive modeling and sampling flowchart 

IV. CONSTRAINED MODELING 

In the basic modeling algorithm it is assumed that the 
parameter space is a n-dimensional hypercube, where all 
of the geometrical parameters can be varied independently 
over their whole range. However, in certain structures the 
geometrical parameters must satisfy a number of con- 
straints. Due to these conditions the parameter space is no 
longer rectangular. Certain parts of the parameter space 
are forbidden. This affects the way in which the initial 
one-dimensional models are built as well as the way in 
which the initial n-dimensional data point distribution is 
generated. 

Figure 2 shows a two-dimensional normalized parameter 
space (the extension to more dimensions is straight- 
forward). The two geometrical parameters XI and x2 cannot 
be varied independently. They have to satisfy the condition 
g(x,.xz) L 0. Due to this condition the parameter space is 
divided in two parts: a valid part where g(xl,xj L 0 and a 
forbidden part where g(x,,xt) < 0. All data points must lie 
in the valid part of the parameter space. 
The borders of the parameter space are assumed to be 
linear: a straight line in a two-dimensional parameter 
space, a plane in a three-dimensional parameter space or a 
hyperplane in a hypercube. In this way a border can be 
represented by an equation of the form: 

g&l Y..., x”)=$ajxi =o 
,=I 

1 / t lin&rthex,model( 
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Fig. 2. Constrained two-dimensional parameter space 

The first step in the modeling process is building the 
one-dimensional models. In the basic MAPS algorithm [S] 
these models would be built along lines through the center 
of the parameter space. Since the one-dimensional models 
are used to, gain insight in the influence each of the 
geometrical parameters has on the modeled S-parameters, 
the models should be built along lines where the 
geometrical parameters have their maximum variation. In 
the case of figure 2, xI doesn’t have its maximum variation 
along the line x2 =0.5. Therefore, a first adaptation is made 
to the basic algorithm. The lines for the one-dimensional 
models are shown in figure 2. 

In a second step, the one-dimensional models are used 
to generate the initial two-dimensional data point 
distribution. In figure 2 these data points are represented 
by the black dots. Some of the data points lie in the 
forbidden part of the parameter space. These points have 
to be projected onto the border g(x,,xJ = 0 . This is done 
as follows. A straight line through a point (xd,,...,x& 
perpendicular to (2) is given by the equation: 

xi = xdi + Aa;. (3) 
Substituting (3) in (2) results in an expression for h: 

Substituting this expression in (3) yields the coordinates 
of the projected point. In figure 2, the projected points are 
represented by the circles on the border of the parameter 
space. The initial data point distribution then consists of 
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the points in the uniform mesh that lie in the valid part of Suppose that embedding the inductor in a given design 
the parameter space, the projected points and the data forces the total dimensions of the inductor to be restricted, 
points used for the one-dimensional models. kg.: 

Once the initial data point distribution is generated, the 
rest of the modeling process is almost the same as the 
basic modeling algorithm. New data points are selected by 
evaluating the selection criteria on a dense grid. This grid 
covers only the valid part of the parameter space. In this 
way it is made sure that no new data points are selected in 
the forbidden part of the parameter space. 

L, =3W+S+alllO 

L, =4W++S+a-<140 
(5) 

Due to these restrictions W and S cannot be varied 
independently (a = 40 mil). Figure 4 shows the reduced 
parameter space along with the two borders G*(WS) = 70 - 
3W-S=OandG2(W,S)=100-4W-2S=O.Theintersect 
of G, and G2 is the point (W/i’) = (20,lO). The forbidden 
part of the parameter space is grayed. 

Due to the restrictions, W cannot reach the maximum of 
its range. For W > 21.667 all points are in the forbidden 
part of the parameter space. The modeling algorithm must 
be able to detect this and adapt the original parameter 
ranges. To do this, interval arithmetic [9] is used in an 
iterative process: 

V. EXAMPLE 

As an example consider the layout shown in figure 3. 
This is the layout of a spiral inductor on a microstip 
substrate (with a thickness of 25 mil and a relative 
dielectric constant of 9.6). There are two ports, P, and P2. 
A model is built for the scattering parameters of this 
structure as a function of two geometrical parameters, W 
(the width of the strips) and S (the spacing between the 
strips), and of the fiequencyf: The ranges for W, S and f  
are given in table 1. The S-parameters are calculated using 
the commercially available full-wave simulator ADS 
Momentum [8]. The desired accuracy of the model 
compared to the EM simulations is set to -55 dB. 

w 
Fig. 3. Layout of spiral inductor 

variable 
W 
s 
f  

min 
10 mil 
5 mil 
1 GHz 

max 
30 mil 
15 mil 
5 GHz 

Table 1. Parameter ranges ,for the spiral inductor 

. STEP 0: Set the initial interval values W(O)= [ 10,301 
and S(O)= [5 151 , * Set k=l. 

l STEP 1: Solve both G,( W,SCk-“) = [O,+oo] and 
G2( W,S(“‘)) = [O,+m] for W. The results are Wt and 
Wz. Set WCk)= intersect(WCk~‘),Wt,W2 ). Do the same 
for S. 

l STEP 2: If WCk)= WCk-‘) and SCk’ = SCk-‘) stop the 
iteration, else set k=k+ 1 and return to STEP 1. 

As a result of this iterative process the parameter ranges 
are adapted to W = [ 10,21.667] and S = [5,15]. The 
adapted parameter space is shown in figure 4. 

15 j‘ = F;Ca; f9 

\ 
line W model line S model 

Fig. 4. Adapted parameter space 
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Fig. 6. Data points used during the modeling process 

At this point the real modeling starts. The first step is 
building two one-dimensional models: one for W (with 
S=5) and one for S (with w=15.833). Based upon these 
models the initial two-dimensional data point distribution 
is generated. In figure 4 the crosses represent the data 
points used in the one-dimensional models, and the black 
dots represent the data points in the initial two- 
dimensional distribution. 3 of the points in the initial data 
point distribution lie in the forbidden part of the parameter 
space. These are projected onto the borders G, and G1. 

Finally, 7 more data points are chosen using the 
selection criteria, resulting in a total of 27 data points for 
the whole modeling process. All data points used are 
shown in figure 6. 

In figure 7, the scattering parameters of the spiral (in the 
constrained parameter space) are represented as a function 
of fiequencyf, and geometrical parameters Wand S. 

The accuracy of the model was tested in 4838 data 
points uniformly distributed over the parameter and 
frequency space. The maximum deviation that was found 
between the S-parameters calculated using the MAPS 
model and the results obtained with the EM simulator [8] 
was -54.3 dB. 99.9% of the test points had an accuracy 
level of -55 dB or better. 

VI. CONCLUSION 

A new adaptive technique (MAPS) was presented for 
constrained parameterized model building of general 
passive components. Certain dependencies may exist 
between (some of) the geometrical parameters. The 
models are based on full-wave EM simulations, and have a 
predefined accuracy. Once generated, the analytical 
models can be grouped in a library, and incorporated in a 
circuit simulator where they can be used for simulation, 
design and optimization purposes. 

Fig. 7. S-data of spiral as a function off; W. S 

An example was given to illustrate the technique. 
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